P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data
نویسنده
چکیده
The P-splines of Eilers andMarx (Stat Sci 11:89– 121, 1996) combine aB-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; (ii) it is possible to flexibly ‘mix-and-match’ the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; (iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data. B Simon N. Wood [email protected] 1 School of Mathematics, University of Bristol, Bristol, UK
منابع مشابه
Fast and compact smoothing on large multidimensional grids
A framework of penalized generalized linear models and tensor products of B-splines with roughness penalties allows effective smoothing of data in multidimensional arrays. A straightforward application of the penalized Fisher scoring algorithm quickly runs into storage and computational difficulties. A novel algorithm takes advantage of the special structure of both the data as an array and the...
متن کاملSplines, Knots, and Penalties
Penalized splines have gained much popularity as a flexible tool for smoothing and semi-parametric models. Two approaches have been advocated: 1) use a B-spline basis, equally-spaced knots and difference penalties (Eilers and Marx, 1996) and 2) use truncated power functions, knots based on quantiles of the independent variable and a ridge penalty (Ruppert, Wand and Carroll, 2003). We compare th...
متن کاملShape-preserving, multiscale fitting of univariate data by cubic L1 smoothing splines
Bivariate cubic L1 smoothing splines are introduced. The coefficients of a cubic L1 smoothing spline are calculated by minimizing the weighted sum of the L1 norms of second derivatives of the spline and the 1 norm of the residuals of the data-fitting equations. Cubic L1 smoothing splines are compared with conventional cubic smoothing splines based on the L2 and 2 norms. Computational results fo...
متن کاملSmoothing Spline ANOVA Decomposition of Arbitrary Splines: An Application to Eye Movements in Reading
The Smoothing Spline ANOVA (SS-ANOVA) requires a specialized construction of basis and penalty terms in order to incorporate prior knowledge about the data to be fitted. Typically, one resorts to the most general approach using tensor product splines. This implies severe constraints on the correlation structure, i.e. the assumption of isotropy of smoothness can not be incorporated in general. T...
متن کاملP . A . Sherar Variational Based Analysis and Modelling using B - splines
The use of energy methods and variational principles is widespread in many fields of engineering of which structural mechanics and curve and surface design are two prominent examples. In principle many different types of function can be used as possible trial solutions to a given variational problem but where piecewise polynomial behaviour and user controlled cross segment continuity is either ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 27 شماره
صفحات -
تاریخ انتشار 2017